Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.12.480188

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of coronavirus disease 2019 (Covid-19), an ongoing global public health emergency. Despite the availability of safe and efficacious vaccines, achieving herd immunity remains a challenge due in part to rapid viral evolution. Multiple variants of concern (VOCs) have emerged, the latest being the heavily mutated Omicron, which exhibits the highest resistance to neutralizing antibodies from past vaccination or infection. Currently approved vaccines generate robust systemic immunity, yet poor immunity at the respiratory tract. We have demonstrated that a polymersome-based protein subunit vaccine with wild type (WT) spike protein and CpG adjuvant induces robust systemic immunity (humoral and T cell responses) in mice. Both antigen and adjuvant are encapsulated in artificial cell membrane (ACM) polymersomes: synthetic, nanoscale vesicles that substantially enhance the immune response through efficient delivery to dendritic cells. In the present study, we have formulated a vaccine candidate with the spike protein from Beta variant and assessed its immunogenicity in golden Syrian hamsters. Two doses of ACM-Beta spike vaccine administered via intramuscular (IM) injection evoke modest serum neutralizing titers that are equally efficacious towards WT and Beta viruses. In contrast, the ACM-WT spike vaccine induces a predominantly WT-specific serum neutralizing response with pronounced reduction in potency towards the Beta variant. Remarkably, immunogenicity of the ACM-Beta spike vaccine is greatly enhanced through intranasal (IN) administration. Following IN challenge with the Beta variant, IM-immunized hamsters are fully protected from disease but not infection, displaying similar peak viral RNA loads in oral swabs as non-vaccinated controls. In contrast, hamsters IN vaccinated with ACM-Beta spike vaccine are protected from disease and infection, exhibiting a ~100-fold drop in total and subgenomic RNA load as early as day 2 post challenge. We further demonstrate that nasal washes from IN- but not IM-immunized animals possess virus neutralizing activity that is broadly efficacious towards Delta and Omicron variants. Altogether, our results show IN administration of ACM-Beta spike vaccine to evoke systemic and mucosal antibodies that cross-neutralize multiple SARS-CoV-2 VOCs. Our work supports IN administration of ACM-Beta spike vaccine for a next-generation vaccination strategy that not only protects against disease but also an infection of the respiratory tract, thus potentially preventing asymptomatic transmission.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.24.427729

ABSTRACT

Multiple successful vaccines against SARS-CoV-2 are urgently needed to address the ongoing Covid-19 pandemic. In the present work, we describe a subunit vaccine based on the SARS-CoV-2 spike protein co-administered with CpG adjuvant. To enhance the immunogenicity of our formulation, both antigen and adjuvant were encapsulated with our proprietary artificial cell membrane (ACM) polymersome technology. Structurally, ACM polymersomes are self-assembling nanoscale vesicles made up of an amphiphilic block copolymer comprising of polybutadiene-b-polyethylene glycol and a cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane. Functionally, ACM polymersomes serve as delivery vehicles that are efficiently taken up by dendritic cells, which are key initiators of the adaptive immune response. Two doses of our formulation elicit robust neutralizing titers in C57BL/6 mice that persist at least 40 days. Furthermore, we confirm the presence of memory CD4+ and CD8+ T cells that produce Th1 cytokines. This study is an important step towards the development of an efficacious vaccine in humans.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL